Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.176
Filtrar
1.
Am Nat ; 203(2): E63-E77, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306287

RESUMO

AbstractDispersal emerges as an outcome of organismal traits and external forcings. However, it remains unclear how the emergent dispersal kernel evolves as a by-product of selection on the underlying traits. This question is particularly compelling in coastal marine systems, where dispersal is tied to development and reproduction and where directional currents bias larval dispersal downstream, causing selection for retention. We modeled the dynamics of a metapopulation along a finite coastline using an integral projection model and adaptive dynamics to understand how asymmetric coastal currents influence the evolution of larval (pelagic larval duration) and adult (spawning frequency) life history traits, which indirectly shape the evolution of marine dispersal kernels. Selection induced by alongshore currents favors the release of larvae over multiple time periods, allowing long pelagic larval durations and long-distance dispersal to be maintained in marine life cycles in situations where they were previously predicted to be selected against. Two evolutionarily stable strategies emerged: one with a long pelagic larval duration and many spawning events, resulting in a dispersal kernel with a larger mean and variance, and another with a short pelagic larval duration and few spawning events, resulting in a dispersal kernel with a smaller mean and variance. Our theory shows how coastal ocean flows are important agents of selection that can generate multiple, often co-occurring evolutionary outcomes for marine life history traits that affect dispersal.


Assuntos
Organismos Aquáticos , Larva , Animais , Larva/fisiologia , Organismos Aquáticos/fisiologia
2.
Mar Pollut Bull ; 199: 115978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217911

RESUMO

The detrimental effects of anthropogenic underwater noise on marine organisms have garnered significant attention among scientists. This review delves into the research concerning the repercussions of underwater noise on marine species, with specific emphasis on the physiological and molecular responses of marine biota. This review investigates the sensory mechanisms, hearing sensitivity, and reaction thresholds of diverse marine organisms, shedding light on their susceptibility to underwater noise disturbances. The physiological and molecular effects of anthropogenic underwater noise on marine biota include oxidative stress, energy homeostasis, metabolism, immune function, and respiration. Additionally, changes in the gene expression profile associated with oxidative stress, metabolism, and immunological response are among the responses reported for marine biota. These effects pose a threat to animal fitness and potentially affect their survival as individuals and populations.


Assuntos
Organismos Aquáticos , Ruído , Humanos , Animais , Organismos Aquáticos/fisiologia , Audição/fisiologia , Biota
3.
Sci Total Environ ; 912: 169348, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104837

RESUMO

Bioinspired surfaces, due to their nano and micro topographical features, offer a promising approach for the development of novel antifouling solutions. The study of surface topography has gained popularity in recent years, demonstrating significant potential in mimicking natural structures that could be manufactured for application in the marine environment. This research focuses on investigating the antifouling (AF) performance of bio-inspired micro-textures inspired by Brill fish scales, Scophthalmus rhombus, under static laboratory conditions, using two common fouling diatom species, Amphora coffeaeformis and Nitzschia ovalis. In this study, we evaluate six engineered surfaces, inspired by Brill fish scales, fabricated through a 2-photon polymerization (2PP) process, for their potential as antifouling solutions. The investigation explores the settlement behaviour of microfouling organisms, comparing these mechanisms with theoretical models to guide the future design of antifouling materials. A key emphasis is placed on the impact of surface topography on the disruption of cellular response. Our results suggest that cells smaller than 10 µm, exceeding the peak-to-peak distances between surface features, comfortably position themselves between adjacent features. On the other hand, as peak-to-peak distances decrease, cells shift from settling within uniform gaps to resting on top of surface features. Surfaces with sharpened edges demonstrate a more substantial reduction in diatom attachments compared to those with rounded edges. Furthermore, all micro-textured surfaces exhibit a significant decrease in colony formation compared to control samples. In conclusion, this study shows the potential to manipulate cellular responses through topographical features, providing valuable insights for the design of effective antifouling materials. The results contribute to the growing body of knowledge in biomimetic antifouling strategies using a novel marine organism for inspiration to design practical structures that can be replicated.


Assuntos
Incrustação Biológica , Materiais Biomiméticos , Diatomáceas , Linguado , Animais , Incrustação Biológica/prevenção & controle , Propriedades de Superfície , Diatomáceas/fisiologia , Organismos Aquáticos/fisiologia , Materiais Biomiméticos/química
4.
Nature ; 622(7983): 545-551, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758946

RESUMO

Trilobites are among the most iconic of fossils and formed a prominent component of marine ecosystems during most of their 270-million-year-long history from the early Cambrian period to the end Permian period1. More than 20,000 species have been described to date, with presumed lifestyles ranging from infaunal burrowing to a planktonic life in the water column2. Inferred trophic roles range from detritivores to predators, but all are based on indirect evidence such as body and gut morphology, modes of preservation and attributed feeding traces; no trilobite specimen with internal gut contents has been described3,4. Here we present the complete and fully itemized gut contents of an Ordovician trilobite, Bohemolichas incola, preserved three-dimensionally in a siliceous nodule and visualized by synchrotron microtomography. The tightly packed, almost continuous gut fill comprises partly fragmented calcareous shells indicating high feeding intensity. The lack of dissolution of the shells implies a neutral or alkaline environment along the entire length of the intestine supporting digestive enzymes comparable to those in modern crustaceans or chelicerates. Scavengers burrowing into the trilobite carcase targeted soft tissues below the glabella but avoided the gut, suggesting noxious conditions and possibly ongoing enzymatic activity.


Assuntos
Artrópodes , Fósseis , Intestinos , Animais , Artrópodes/anatomia & histologia , Artrópodes/enzimologia , Artrópodes/fisiologia , Evolução Biológica , Crustáceos/enzimologia , Síncrotrons , Concentração de Íons de Hidrogênio , Intestinos/química , Intestinos/enzimologia , Intestinos/metabolismo , Organismos Aquáticos/enzimologia , Organismos Aquáticos/fisiologia
5.
Glob Chang Biol ; 29(17): 5033-5043, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401451

RESUMO

Forecasting long-term consequences of global warming requires knowledge on thermal mortality and how heat stress interacts with other environmental stressors on different timescales. Here, we describe a flexible analytical framework to forecast mortality risks by combining laboratory measurements on tolerance and field temperature records. Our framework incorporates physiological acclimation effects, temporal scale differences and the ecological reality of fluctuations in temperature, and other factors such as oxygen. As a proof of concept, we investigated the heat tolerance of amphipods Dikerogammarus villosus and Echinogammarus trichiatus in the river Waal, the Netherlands. These organisms were acclimated to different temperatures and oxygen levels. By integrating experimental data with high-resolution field data, we derived the daily heat mortality probabilities for each species under different oxygen levels, considering current temperatures as well as 1 and 2°C warming scenarios. By expressing heat stress as a mortality probability rather than a upper critical temperature, these can be used to calculate cumulative annual mortality, allowing the scaling up from individuals to populations. Our findings indicate a substantial increase in annual mortality over the coming decades, driven by projected increases in summer temperatures. Thermal acclimation and adequate oxygenation improved heat tolerance and their effects were magnified on longer timescales. Consequently, acclimation effects appear to be more effective than previously recognized and crucial for persistence under current temperatures. However, even in the best-case scenario, mortality of D. villosus is expected to approach 100% by 2100, while E. trichiatus appears to be less vulnerable with mortality increasing to 60%. Similarly, mortality risks vary spatially: In southern, warmer rivers, riverine animals will need to shift from the main channel toward the cooler head waters to avoid thermal mortality. Overall, this framework generates high-resolution forecasts on how rising temperatures, in combination with other environmental stressors such as hypoxia, impact ecological communities.


Assuntos
Anfípodes , Organismos Aquáticos , Mudança Climática , Aquecimento Global , Resposta ao Choque Térmico , Anfípodes/fisiologia , Temperatura , Aclimatação , Organismos Aquáticos/fisiologia , Rios , Países Baixos , Monitoramento Ambiental
6.
Environ Toxicol Chem ; 42(6): 1371-1385, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37014181

RESUMO

A series of chronic toxicity tests was conducted exposing three aquatic species to iron (Fe) in laboratory freshwaters. The test organisms included the green algae Raphidocelis subcapitata, the cladoceran Ceriodaphnia dubia, and the fathead minnow Pimephales promelas. They were exposed to Fe (as Fe (III) sulfate) in waters under varying pH (5.9-8.5), hardness (10.3-255 mg/L CaCO3 ), and dissolved organic carbon (DOC; 0.3-10.9 mg/L) conditions. Measured total Fe was used for calculations of biological effect concentrations because dissolved Fe was only a fraction of nominal and did not consistently increase as total Fe increased. This was indicative of the high concentrations of Fe required to elicit a biological response and that Fe species that did not pass through a 0.20- or 0.45-µm filter (dissolved fraction) contributed to Fe toxicity. The concentrations frequently exceeded the solubility limits of Fe(III) under circumneutral pH conditions relevant to most natural surface waters. Chronic toxicity endpoints (10% effect concentrations [EC10s]) ranged from 442 to 9607 µg total Fe/L for R. subcapitata growth, from 383 to 15 947 µg total Fe/L for C. dubia reproduction, and from 192 to 58,308 µg total Fe/L for P. promelas growth. Toxicity to R. subcapitata was variably influenced by all three water quality parameters, but especially DOC. Toxicity to C. dubia was influenced by DOC, less so by hardness, but not by pH. Toxicity to P. promelas was variable, but greatest under low hardness, low pH, and low DOC conditions. These data were used to develop an Fe-specific, bioavailability-based multiple linear regression model as part of a companion publication. Environ Toxicol Chem 2023;42:1371-1385. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Organismos Aquáticos/fisiologia , Matéria Orgânica Dissolvida , Ferro/toxicidade , Dureza , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/toxicidade , Cyprinidae/fisiologia
7.
Biol Open ; 12(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942843

RESUMO

Although much research has focused on marine mammal sensory systems over the last several decades, we still lack basic knowledge for many of the species within this diverse group of animals. Our conference workshop allowed all participants to present recent developments in the field and culminated in discussions on current knowledge gaps. This report summarizes open questions regarding marine mammal sensory ecology and will hopefully serve as a platform for future research.


Assuntos
Organismos Aquáticos , Mamíferos , Sensação , Animais , Mamíferos/fisiologia , Organismos Aquáticos/fisiologia , Sensação/fisiologia
9.
Ann Rev Mar Sci ; 15: 509-538, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36028229

RESUMO

The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.


Assuntos
Organismos Aquáticos , Relógios Biológicos , Animais , Organismos Aquáticos/fisiologia , Biologia Marinha , Oceanos e Mares , Ecossistema
10.
Proc Natl Acad Sci U S A ; 119(28): e2201345119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787059

RESUMO

Rising temperatures are associated with reduced body size in many marine species, but the biological cause and generality of the phenomenon is debated. We derive a predictive model for body size responses to temperature and oxygen (O2) changes based on thermal and geometric constraints on organismal O2 supply and demand across the size spectrum. The model reproduces three key aspects of the observed patterns of intergenerational size reductions measured in laboratory warming experiments of diverse aquatic ectotherms (i.e., the "temperature-size rule" [TSR]). First, the interspecific mean and variability of the TSR is predicted from species' temperature sensitivities of hypoxia tolerance, whose nonlinearity with temperature also explains the second TSR pattern-its amplification as temperatures rise. Third, as body size increases across the tree of life, the impact of growth on O2 demand declines while its benefit to O2 supply rises, decreasing the size dependence of hypoxia tolerance and requiring larger animals to contract by a larger fraction to compensate for a thermally driven rise in metabolism. Together our results support O2 limitation as the mechanism underlying the TSR, and they provide a physiological basis for projecting ectotherm body size responses to climate change from microbes to macrofauna. For small species unable to rapidly migrate or evolve greater hypoxia tolerance, ocean warming and O2 loss in this century are projected to induce >20% reductions in body mass. Size reductions at higher trophic levels could be even stronger and more variable, compounding the direct impact of human harvesting on size-structured ocean food webs.


Assuntos
Organismos Aquáticos/fisiologia , Tamanho Corporal , Mudança Climática , Oxigênio , Animais , Água do Mar/microbiologia , Temperatura
11.
Dokl Biol Sci ; 503(1): 68-71, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35437738

RESUMO

Trematodes found in the enteropneust hemichordates are described for the first time. Metacercariae have been found in the trunk coelom, in the collar coelom, in the proboscis coelom, and in the glomerulus of the deep-sea torquaratorid Quatuoralisia malakhovi Ezhova et Lukinykh, 2022. This is the first find of parasites in the glomerulus of acorn worms. The taxonomy of the found trematodes is discussed.


Assuntos
Cordados não Vertebrados , Trematódeos , Animais , Organismos Aquáticos/fisiologia
12.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163666

RESUMO

Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.


Assuntos
Transtornos da Motilidade Ciliar/genética , Modelos Animais de Doenças , Animais , Organismos Aquáticos/fisiologia , Técnicas de Cultura de Células , Humanos , Mamíferos/fisiologia
13.
PLoS One ; 17(2): e0254910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213532

RESUMO

The mutualism between the thioautotrophic bacterial ectosymbiont Candidatus Thiobius zoothamnicola and the giant ciliate Zoothamnium niveum thrives in a variety of shallow-water marine environments with highly fluctuating sulfide emissions. To persist over time, both partners must reproduce and ensure the transmission of symbionts before the sulfide stops, which enables carbon fixation of the symbiont and nourishment of the host. We experimentally investigated the response of this mutualism to depletion of sulfide. We found that colonies released some initially present but also newly produced macrozooids until death, but in fewer numbers than when exposed to sulfide. The symbionts on the colonies proliferated less without sulfide, and became larger and more rod-shaped than symbionts from freshly collected colonies that were exposed to sulfide and oxygen. The symbiotic monolayer was severely disturbed by growth of other microbes and loss of symbionts. We conclude that the response of both partners to the termination of sulfide emission was remarkably quick. The development and the release of swarmers continued until host died and thus this behavior contributed to the continuation of the association.


Assuntos
Cilióforos/genética , Rhizobiaceae/genética , Sulfetos/metabolismo , Simbiose/genética , Animais , Organismos Aquáticos/genética , Organismos Aquáticos/fisiologia , Bactérias/genética , Ciclo do Carbono/genética , Cilióforos/fisiologia , Filogenia , Rhizobiaceae/fisiologia
14.
Sci Rep ; 12(1): 1174, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064187

RESUMO

To predict global warming impacts on parasitism, we should describe the thermal tolerance of all players in host-parasite systems. Complex life-cycle parasites such as trematodes are of particular interest since they can drive complex ecological changes. This study evaluates the net response to temperature of the infective larval stage of Himasthla elongata, a parasite inhabiting the southwestern Baltic Sea. The thermal sensitivity of (i) the infected and uninfected first intermediate host (Littorina littorea) and (ii) the cercarial emergence, survival, self-propelling, encystment, and infection capacity to the second intermediate host (Mytilus edulis sensu lato) were examined. We found that infection by the trematode rendered the gastropod more susceptible to elevated temperatures representing warm summer events in the region. At 22 °C, cercarial emergence and infectivity were at their optimum while cercarial survival was shortened, narrowing the time window for successful mussel infection. Faster out-of-host encystment occurred at increasing temperatures. After correcting the cercarial emergence and infectivity for the temperature-specific gastropod survival, we found that warming induces net adverse effects on the trematode transmission to the bivalve host. The findings suggest that gastropod and cercariae mortality, as a tradeoff for the emergence and infectivity, will hamper the possibility for trematodes to flourish in a warming ocean.


Assuntos
Aclimatação , Organismos Aquáticos/fisiologia , Gastrópodes/parasitologia , Trematódeos/patogenicidade , Infecções por Trematódeos/veterinária , Animais , Cercárias/isolamento & purificação , Cercárias/patogenicidade , Cercárias/fisiologia , Aquecimento Global , Interações Hospedeiro-Parasita , Temperatura Alta/efeitos adversos , Mytilus edulis , Estações do Ano , Trematódeos/isolamento & purificação , Trematódeos/fisiologia , Infecções por Trematódeos/diagnóstico , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/transmissão
15.
Sci Total Environ ; 818: 151782, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800448

RESUMO

Ocean acidification (OA) represents a threat to marine organisms and ecosystems. However, OA rarely exists in isolation but occurs concomitantly with other stressors such as ultraviolet radiation (UVR), whose effects have been neglected in oceanographical observations. Here, we perform a quantitative meta-analysis based on 373 published experimental assessments from 26 studies to examine the combined effects of OA and UVR on marine primary producers. The results reveal predominantly additive stressor interactions (69-84% depending on the UV waveband), with synergistic and antagonistic interactions being rare but significantly different between micro- and macro-algae. In microalgae, variations in interaction type frequencies are related to cell volume, with antagonistic interactions accounting for a higher proportion in larger sized species. Despite additive interactions being most frequent, the small proportion of antagonistic interactions appears to have a stronger power, leading to neutral effects of OA in combination with UVR. High levels of UVR at near in situ conditions in combination with OA showed additive inhibition of calcification, but not when UVR was low. The results also reveal that the magnitude of responses is strongly dependent on experimental duration, with the negative effects of OA on calcification and pigmentation being buffered and amplified by increasing durations, respectively. Tropical primary producers were more vulnerable to OA or UVR alone compared to conspecifics from other climatic regions. Our analysis highlights that further multi-stressor long-term adaptation experiments with marine organisms of different cell volumes (especially microalgae) from different climatic regions are needed to fully disclose future impacts of OA and UVR.


Assuntos
Ecossistema , Água do Mar , Organismos Aquáticos/fisiologia , Concentração de Íons de Hidrogênio , Oceanos e Mares , Raios Ultravioleta
16.
Ann Rev Mar Sci ; 14: 25-48, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34314598

RESUMO

To better understand life in the sea, marine scientists must first quantify how individual organisms experience their environment, and then describe how organismal performance depends on that experience. In this review, we first explore marine environmental variation from the perspective of pelagic organisms, the most abundant life forms in the ocean. Generation time, the ability to move relative to the surrounding water (even slowly), and the presence of environmental gradients at all spatial scales play dominant roles in determining the variation experienced by individuals, but this variation remains difficult to quantify. We then use this insight to critically examine current understanding of the environmental physiology of pelagic marine organisms. Physiologists have begun to grapple with the complexity presented by environmental variation, and promising frameworks exist for predicting and/or interpreting the consequences for physiological performance. However, new technology needs to be developed and much difficult empirical work remains, especially in quantifying response times to environmental variation and the interactions among multiple covarying factors. We call on the field of global-change biology to undertake these important challenges.


Assuntos
Organismos Aquáticos , Organismos Aquáticos/fisiologia , Oceanos e Mares
17.
Vet Res ; 52(1): 146, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34924019

RESUMO

Gram-negative bacteria are known to subvert eukaryotic cell physiological mechanisms using a wide array of virulence factors, among which the type three-secretion system (T3SS) is often one of the most important. The T3SS constitutes a needle-like apparatus that the bacterium uses to inject a diverse set of effector proteins directly into the cytoplasm of the host cells where they can hamper the host cellular machinery for a variety of purposes. While the structure of the T3SS is somewhat conserved and well described, effector proteins are much more diverse and specific for each pathogen. The T3SS can remodel the cytoskeleton integrity to promote intracellular invasion, as well as silence specific eukaryotic cell signals, notably to hinder or elude the immune response and cause apoptosis. This is also the case in aquatic bacterial pathogens where the T3SS can often play a central role in the establishment of disease, although it remains understudied in several species of important fish pathogens, notably in Yersinia ruckeri. In the present review, we summarise what is known of the T3SS, with a special focus on aquatic pathogens and suggest some possible avenues for research including the potential to target the T3SS for the development of new anti-virulence drugs.


Assuntos
Organismos Aquáticos , Proteínas da Membrana Bacteriana Externa , Fenômenos Fisiológicos Bacterianos , Sistemas de Secreção Tipo III , Animais , Organismos Aquáticos/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Dor/veterinária , Transporte Proteico , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo
18.
Nature ; 600(7889): 395-407, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34912083

RESUMO

The ocean is warming, losing oxygen and being acidified, primarily as a result of anthropogenic carbon emissions. With ocean warming, acidification and deoxygenation projected to increase for decades, extreme events, such as marine heatwaves, will intensify, occur more often, persist for longer periods of time and extend over larger regions. Nevertheless, our understanding of oceanic extreme events that are associated with warming, low oxygen concentrations or high acidity, as well as their impacts on marine ecosystems, remains limited. Compound events-that is, multiple extreme events that occur simultaneously or in close sequence-are of particular concern, as their individual effects may interact synergistically. Here we assess patterns and trends in open ocean extremes based on the existing literature as well as global and regional model simulations. Furthermore, we discuss the potential impacts of individual and compound extremes on marine organisms and ecosystems. We propose a pathway to improve the understanding of extreme events and the capacity of marine life to respond to them. The conditions exhibited by present extreme events may be a harbinger of what may become normal in the future. As a consequence, pursuing this research effort may also help us to better understand the responses of marine organisms and ecosystems to future climate change.


Assuntos
Ácidos/análise , Organismos Aquáticos , Modelos Climáticos , Ecossistema , Aquecimento Global/estatística & dados numéricos , Oceanos e Mares , Oxigênio/análise , Ácidos/química , Animais , Organismos Aquáticos/fisiologia , Calor Extremo/efeitos adversos , Cadeia Alimentar , Concentração de Íons de Hidrogênio , Oxigênio/química
19.
Sci Rep ; 11(1): 23518, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876603

RESUMO

Species react to environmental change via plastic and evolutionary responses. While both of them determine species' survival, most studies quantify these responses individually. As species occur in communities, competing species may further influence their respective response to environmental change. Yet, how environmental change and competing species combined shape plastic and genetic responses to environmental change remains unclear. Quantifying how competition alters plastic and genetic responses of species to environmental change requires a trait-based, community and evolutionary ecological approach. We exposed unicellular aquatic organisms to long-term selection of increasing salinity-representing a common and relevant environmental change. We assessed plastic and genetic contributions to phenotypic change in biomass, cell shape, and dispersal ability along increasing levels of salinity in the presence and absence of competition. Trait changes in response to salinity were mainly due to mean trait evolution, and differed whether species evolved in the presence or absence of competition. Our results show that species' evolutionary and plastic responses to environmental change depended both on competition and the magnitude of environmental change, ultimately determining species persistence. Our results suggest that understanding plastic and genetic responses to environmental change within a community will improve predictions of species' persistence to environmental change.


Assuntos
Organismos Aquáticos/genética , Organismos Aquáticos/fisiologia , Evolução Biológica , Mudança Climática , Ecossistema , Meio Ambiente , Genética , Dinâmica Populacional
20.
PLoS One ; 16(10): e0258184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34606498

RESUMO

Understanding and predicting the response of marine communities to climate change at large spatial scales, and distilling this information for policymakers, are prerequisites for ecosystem-based management. Changes in thermal habitat suitability across species' distributions are especially concerning because of their implications for abundance, affecting species' conservation, trophic interactions and fisheries. However, most predictive studies of the effects of climate change have tended to be sub-global in scale and focused on shifts in species' range edges or commercially exploited species. Here, we develop a widely applicable methodology based on climate response curves to predict global-scale changes in thermal habitat suitability. We apply the approach across the distributions of 2,293 shallow-water fish species under Representative Concentration Pathways 4.5 and 8.5 by 2050-2100. We find a clear pattern of predicted declines in thermal habitat suitability in the tropics versus general increases at higher latitudes. The Indo-Pacific, the Caribbean and western Africa emerge as the areas of most concern, where high species richness and the strongest declines in thermal habitat suitability coincide. This reflects a pattern of consistently narrow thermal ranges, with most species in these regions already exposed to temperatures above inferred thermal optima. In contrast, in temperate regions, such as northern Europe, where most species live below thermal optima and thermal ranges are wider, positive changes in thermal habitat suitability suggest that these areas are likely to emerge as the greatest beneficiaries of climate change, despite strong predicted temperature increases.


Assuntos
Organismos Aquáticos/fisiologia , Mudança Climática , Ecossistema , Peixes/fisiologia , Internacionalidade , Água , Animais , Distribuição Normal , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...